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Unsteady laminar compressible boundary-layer flow with variable properties at a 
three-dimensional stagnation point for both cold and hot walls has been studied for 
the case when the velocity of the incident stream varies arbitrarily with time. The 
partial differential equations governing the Aow have been solved numerically using 
an implicit finite-difference scheme. Computations have been carried out for two 
particular unsteady free-stream velocity distributions: (i) an accelerating stream and 
(ii) a fluctuating stream. The results indicate that the variation of the density-viscosity 
product across the boundary layer, the wall temperature and the nature of stagnation 
point significantly affect the skin friction and heat transfer. 

1. Introduction 
The theory of the response of laminar boundary layers to variation of the external 

stream with time has many practical applications. It is of considerable interest in 
missile aerodynamics, in aircraft response to atmospheric gusts, in turbomachines and 
in flutter phenomena involving wings. Extensive reviews of the literature on the 
response of the laminar boundary layer to a fluctuating free stream and the literature 
on allied unsteady flows have been given by Stuart (1 971), Riley (1975) and Telionis 
( 1  975). One of the best known studies is that of Lighthill (1  954), who investigated the 
response of an incompressible laminar boundary layer over an arbitrary cylinder to 
small fluctuations in the external stream. Low and high frequency solutions were 
obtained by a momentum-integral method. Moore (1951), Moore & Ostrach (1956), 
Illingworth (1958), Gribben (1961) and King (1966) studied the unsteady laminar 
compressible boundary-layer flow over two-dimensional bodies by momentum- 
integral or series-expansion methods. Recently, Telionis & Gupta (1 977) investigated 
the response of the compressible laminar boundary layer to small fluctuations in the 
outer flow under more general conditions for both two-dimensional and axisymmetric 
bodies. Solutions were presented for small amplitudes in the form of asymptotic 
expansions in powers of a frequency parameter. Gribben (1971) studied the com- 
pressible oscillating laminar boundary-layer flow in the neighbourhood of a two- 
dimensional stagnation point on a hot surface. Solutions were given as series valid 
for lowaand high frequencies. Vimala & Nath (1 975) studied the above problem as well 
as a constantly accelerating flow problem for a cold wall and solved the governing 
partial differential equations numerically using an implicit finite-difference scheme. 
The problem was tackled as an initial-value problem, starting from a steady solution, 
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and hence the solution was different from other work (Lighthill 1954; Gribben 1961, 
1971), where transient motions were assumed to have died away. It may be noted that 
all the above authors assumed the product of density and viscosity to be constant 
across the boundary layer. This simplification leads to appreciable errors in the 
analysis. Moreover, they considered unsteady flow over two-dimensional and axi- 
symmetric bodies only. It is well known that unsteady flows over three-dimensional 
bodies are of more practical interest. 

In  this investigation, we have studied the unsteady laminar compressible boundary- 
layer flow in the immediate neighbourhood of the stagnation points on a class of 
three-dimensional bodies ranging from spheres through cylinders to saddle shapes. The 
magnitudes of the inviscid velocity gradients in the two principal planes have been 
taken to be equal and account has been taken of the effect of the variation of the 
density-viscosity product across the boundary layer. Both cold and hot walls have 
been considered. The unsteadiness in the present case is due to arbitrary variations 
in the velocity of the incident stream with time. The problem has been solved as an 
initial-value problem, starting from a steady solution (Vimala & Nath 1975). The 
partial differential equations governing the flow have been solved numerically using 
an implicit finite-difference scheme after transformation to new co-ordinates with a 
finite domain (Marvin & Sheaffer 1969; Vimala & Nath 1975). Computations have 
been carried out for the following free-stream velocity distributions: (i) a stream 
moving with constant acceleration and (ii) a stream fluctuating about a steady mean. 
The steady-state results have been compared with those obtained by Libby (1967) 
and Nath & Muthanna (1977) and the unsteady-state results with those of Vimala & 
Nath (1975). 

2. Governing equations 
If it  is assumed that the external flow is homentropic, that the surface is maintained 

a t  a constant temperature and that the dissipation terms are negligible at  the stagna- 
tion point, then the boundary-layer equations governing unsteady laminar com- 
pressible flow at the stagnation point of a three-dimensional body can be expressed 
as (Libby 1967) 

a a a 
g + & p 4 + - ( p v ) + @ 4  aY = 0, 

au au au au 
at ax ay a2 

av av av av 

-+u-+v-+w- (2.1 b )  
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(2 . la )  

(2 . lc )  

(2 . ld)  

Here t is the time, x, y and z are the principal, transverse and normal directions, 
respectively, u, v and w are the velocity components in the x, y and x directions, re- 
spectively, and p, p, h and g are, respectively, the density, viscosity, specific enthalpy 
and Prandtl number. The suffix e denotes free-stream values. 
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The relevant initial and boundary conditions are 

(2.2b) 

(2.2c) 

where the suExes i and w denote values at the initial time t = 0 and at the wall z = 0, 
respectively, and h, and he are constants. For three-dimensional stagnation-point flow, 
free-stream velocities u, and v, which vary arbitrarily with time can, without loss of 
generality, be expressed in the form 

U ,  = ax$(t*),  V, = by$(t*), t *  = at, (2.2d) 

where a = (du,/dx), and b = (dv,/dy), are constants, a has the dimensions (time)-l, 
a suffix zero denotes the value at the stagnation point and $ is an arbitrary function 
representing the nature of the unsteadiness in the external stream and has a continuous 
first derivative for t * > 0. 

On applying the transformations 

( 2 . 3 ~ )  

(2.3b) 

I 7 = ( P e  a/Pe)& 1' (P/pe) dz,  
0 

u = ax$(t*) af (7, t*)/a% = by$($*) a47, t*)/a7, 

w = - (Pe/P)  (Pu,a/PeP[$(t*) ( f + c ~ )  +a7/at*I9 
h = h,g(T,t*), c = b / a ,  F = af/aq, s = asla7 

to (2.1 ), we find that (2.1 a )  is satisfied identically and (2.1 b - d )  reduce to 

(2 .4a)  
aF 1 a# aF 

as a s  
i ( N g ) + $ [ ( f + c s ) a 7 / + g - F Z  ] +--( #dt* - F ) - - = o  at* ' 

(2.4b) 

a7 at* 
( 2 . 4 ~ )  

where N = PP/PcPu, = gW-l, PelP = h/he, = (h/he)", (2.5) 

N being the ratio of the density-viscosity products in the boundary layer and the 
free stream. The transformed boundary conditions are given by 

at  time t *. 
F = S = O ,  g = g w  at 7 = 0  

F - t l ,  S - t l ,  g - t l  as 7+co 

We assume that the flow is initially steady then becomes unsteady for t * > 0. Hence 
the initial conditions for F(7 ,  t * ) ,  S(7,  t * )  and g(7, t * )  at t* = 0 are given by the steady- 
flow equations obtained by putting 

$(t*) = 1,  d$/dt* = 0, a p t *  = 0 (2.7) 
24-2 
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in (2.4).  These steady-state equations are the same as those obtained by Libby (1967). 
In  (2.4),  c = 0 corresponds to two-dimensional stagnation-point flow, which has been 
studied by Vimala & Nath (1975) for N = 1,  while c = 1 represents axisymmetric 
stagnation-point flow. The aim of the present study is to obtain solutions for both 
nodal (0 < c < 1) and saddle ( -  1 < c < 0) points of attachment taking into account 
the variation of N across the boundary layer. It may be noted that w = 0.5 corresponds 
to the conditions encountered in hypersonic flight, w = 0.7 corresponds to low- 
temperature flows and w = 1 represents the simplification of a constant density- 
viscosity product (Gross & Dewey 1965). 

The skin-friction coefficients along the x and y directions and the heat-transfer 
coefficient, in the form of the Stanton number St, can be expressed as (Libby 1967; 
Na,th & Muthanna 1977) 

Cf = 27 , /p , (~%*=~  = 2Re2G-l + ( t * )  ( a ~ / a y ) ~ ,  

Cf = 27y/pe(%E)t*=o = 2ReAve/ue) 9E-l N*) (as/a~),, 
(2.8a) 

( 2 . 8 b )  

st = q w / [ ( h e - h w ) p e ( ~ , ) , * = , ~  = RG* B-l(l -gw)-lgE-l(ag/av)w> ( 2 . 8 ~ )  

where 7z = pw(au /ww,  7y = p,(aw/az),, (2 .9a)  

qw = pW a-l(ah/az),, Re, = ux2/ve. (2.9b) 

Here 7, and 7y are the wall shear stresses in the x and y directions, respectively; C, 
and cf are the skin-friction coefficients in the x and y directions, respectively; pw is 
the rate of heat transfer; Re, is the Reynolds number; v is the kinematic viscosity; 
the velocity gradients (aJ’/ay)w and (as/ay), at the wall represent skin-friction 
parameters in the x and y directions, respectively; and the enthalpy gradient (aglay), 
at the wall is the heat-transfer parameter. 

3. Transformation to finite co-ordinates 
We use the transformations 

Y = 1 -exp( -ay), Z = a(1- Y )  (3.1) 

tQ transform the system of partial differential equations (2.4) to a new system of 
co-ordinates wherein the range of variation (0, co) for 7 is replaced by the range 
(0 , l )  for Y .  Here the constant a is a scaling factor chosen to provide an optimum 
distribution at nodal points across the boundary layer. The system of equations (2.4) 
can now be expressed as 

= 0, (3.2~) 

as d+ as 
ay dt* at 

- Na + +(f+cs)] - + #c(g - S2) + 4-l-  (g- 8) -7 = 0, (3.2b) 

( 3 . 2 ~ )  
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The initial conditions (at t* = 0) are 

The boundary conditions are 

for t *  2 0. 
F = S = g = l  at Y = l  y = O 1  F = S = O ,  g = g w  at 

Here f and s are given by 

f = j' 0 (F /Z)dY,  s = / o y ( S / Z ) d Y .  

The skin-friction and heat-transfer parameters can now be written as 

709 

(3.3a) 

(3 .3b)  

(3.3c) 

(3.4) 

(3.5) 

(3.6) 

4. Results and discussion 
The set of equations (3.2) has been solved numerically under conditions (3.3) and 

(3.4) using an implicit finite-difference scheme. Since the method is described in great 
detail by Marvin & Sheaffer (1969) and Vimala & Nath ( 1  975), the description is not 
repeated here. Computations have been carried out for various values of the para- 
meters c ( -  1 < c < I) ,  w (0.5 < w < 1.0) and gw (0.25 < gw < 1.5) with c7 = 0.72, 
a = 0.5, E = 0.1, w* = 5.6, AY = 0.05 and At* = 0.1, but for the sake of brevity only 
results for some of the values of the parameters are presented here.t The unsteady 
free-stream velocity distributions considered here are given by 

&t*) = 1 + t * ,  &t*) = 1 +€sin (w* t * ) ,  

where 8 is a small constant and w* is the frequency parameter. Further reduction in 
the step size A Y  and At* changes the results only in the fourth decimal place. The 
results for the case $(t *) = 1 + t * are given in figures 1-3 and those for the case 

$(t*) = l+esin(w*t*) 
in figures 4 and 5. 

Some representative velocity and enthalpy profiles F, S and g for a cold wall 
(9, < 1) are shown in figure 1. These profiles become steeper as t,he dimensionless 
time t * ,  the index w of the power-law viscosity variation or the parameter c ( 2 0) 
characterizing the nature of the stagnation point increases. When c < 0 and gw < 1,  

t The results for other values of the parameters may be obtained from the authors. 
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FICTJRES 1 (a, b ) .  For legend see facing page. 
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FIGURE 1.  (a) Velocity profiles in the x direction, (b) velocity profiles ir; ,he y direction and (c) 
enthalpy profiles for t* = 0, 2 and 4, c = 0.5, &t*) = 1 + t *  (t* 2 0) and gw = 0.5. -, o = 1.0; 

, = 0-5. --_ 

the F ,  S and g profiles become less steep when c decreases through the range c* < c c 0, 
but in the range - 1 6 c < c* they become steeper as c decreases from c*.  A similar 
trend has been observed by Libby ( I  967) and Nath & Muthanna (1977) for the steady- 
state case (t* = 0). The profiles showing the effect of c and gw are not presented here 
for the sake of brevity. The skin-friction parameters (a_F/ay), and (a#/aq),  in the 
principal and transverse directions and the heat-transfer parameter (aglay), for the 
cold-wall case (gw < 1 )  are shown in figures 2(a)-(e). It is evident from these figures 
that, for c 2 0 (nodal points of attachment) and gw < 1, ( a F / a ~ ) ~ ,  (aS/aq), and 
(aglay), increase with t* (in some cases after a certain time) whatever the value of 
w .  When c < 0 (saddle points of attachment) and gw < 1 ,  (@'lay), and (ag/ay), still 
increase with t* but (a$/ay), first increases then decreases as t* increases. For a 
given t*,  (aF/aV)*,,, (~S/aV)q,,  and (aq/aV), , ,  increase as w or q,,, increases except that 
(ag/ay), decreases as gw increases. It is seen that, for all values o f w ,  gw andt *, (i?F/i3y)w, 
(a$/ay), and (ag/ay), decrease as c decreases until at  some negative c the parameter 
(a$/ay), is reversed and (aF/ay) ,  and (aglay), begin to increase as c decreases. This 
trend has also been observed by Libby (1967) and Nath & Muthanna (1977) for the 
steady-sta,te case. 

The results for gw = 1 -5 (hot wall) are given in figures 3 (a )  and (b).  It is seen from these 
figures that (a_F/ay), increases but (ag/aq), (which is negative) decreases as t* in- 
creases. This is true for all values of c and w. However, for c > 0, (a&'/@), increases 
with t*, but for c < 0 it  first increases then decreases. For a hot wall (9, > 1)) ( ~ P / & , I ) ~  
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FICURE~ 2 (ctd). For legend see facing page. 
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FIGURE 2. Skin-friction and heat-transfer parameters for (a) c = 0, ( b )  c = 0.5, (c) c = 1.0, (d)  
= 0 . 7 . - - -  9 1  

w = 0.5; 0, Vimala & Nath. 

I' 

c = -0.5 and (e) c = - 1.0. q@*) = 1 +t* for t* 2 0; gw = 0.5. -, o =  1.0; -.-, 

and (aS/aT), increase as w decreases in contrast with the cold-wall case (gw < 1). 
However, like the cold-wall case, (ag/aq), decreases as w decreases. 

Some representative skin-friction and heat-transfer results for the oscillatory free- 
stream velocity distribution &t* )  = 1 +€sin (w*t*) are shown in figures 4 and 5 .  It is 
clear from these figures that the skin-friction parameters (aF/aq), and (a~S/aq), 
respond more to the fluctuations in the free-stream velocity than does the heat- 
transfer parameter (ag/ay),. This behaviour holds whatever the values of w ,  c and g,. 
The effect of w on (aF/ap),, (i3S/aq), and (aglaq), is more pronounced when c > 0 
than when c < 0. 

The skin-friction and heat-transfer results for the steady-state case (t* = 0) have 
been compared with those of Libby (1967)  and Nath & Muthanna (1977)  and found 
to be in excellent agreement. Furthermore, we have also compared the skin-friction 
and heat-transfer results for the unsteady case ( t*  > 0) for c = 0 (two-dimensional 
case), w = 1 and gw = 0.5 with those of Vimala & Nath (1975)  and found excellent 
agreement. It may be remarked that the present analysis is more general than those 
performed so far. 
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FIQURE 3. Skin-friction and heat-transfer parameters for (a) c = 0.5 and (b)  c = - 0.5. #( t * )  = 1 + t* 
fort* 2 0; go = 1.5. -, w = 1.0; ---, w = 0.7; - --, w = 0.5. 
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5. Conclusions 
The results show that the variation of the density-viscosity product across the 

boundary layer, the nature of the stagnation point and the wall temperature exert a 
strong influence on the skin-friction and heat-transfer parameters. Furthermore, the 
skin-friction parameter responds more to the fluctuations in the free-stream oscil- 
lating velocities than does the heat-transfer parameter. 
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